Estimating Disease Onset Distribution Functions from Censored Mixture Data

نویسندگان

  • Yanyuan Ma
  • Yuanjia Wang
چکیده

We consider nonparametric estimation of disease onset distribution functions in multiple populations using censored data with unknown population identifiers. The problem is motivated from studies aiming at estimating the disease risk distribution in deleterious mutation carriers for the purpose of genetic counseling and design of therapeutic intervention trials to modify disease onset progression. In these studies, the distribution of disease risk in subjects assumes a mixture form. Although the population identifiers are missing, design and scientific knowledge allow easy calculation of the probability of an observation belonging to each population. We propose a general family of simple weighted least squares estimators and show that the existing consistent nonparametric methods belong to this family. We further show that this family also includes a class of imputation estimators that is not known in the literature for this type of problems. We identify a computationally effortless estimator in the family, study its asymptotic properties, and show its significant efficiency gain comparing to the existing estimators in the literature. The application to a large genetic epidemiological study of Huntington’s disease reveals information on the age-at-onset distribution of HD not previously available in the clinical literature which may generate new clinical hypothesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating disease onset distribution functions in mutation carriers with censored mixture data

We consider non-parametric estimation of disease onset distribution functions in multiple populations by using censored data with unknown population identifiers. The problem is motivated from studies aiming at estimating the age-specific disease risk distribution in deleterious mutation carriers for genetic counselling and design of therapeutic intervention trials to modify disease progression ...

متن کامل

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

متن کامل

Analysis of Hybrid Censored Data from the Lognormal Distribution

The mixture of Type I and Type II censoring schemes, called the hybrid censoring. This article presents the statistical inferences on lognormal parameters when the data are hybrid censored. We obtain the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the unknown parameters. Asymptotic distributions of the maximum likelihood estimators are used ...

متن کامل

Bayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution

This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...

متن کامل

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012